K-Means Module Division Method of FDM3D Printer-Based Function–Behavior–Structure Mapping

Author:

You Ying1,Liu Zhiqiang1,Liu Youqian2,Peng Ning1,Wang Jian1,Huang Yizhe13,Huang Qibai3

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

2. College of Engineering and Technology, Hubei University of Technology, Wuhan 430064, China

3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Product performance, function, cost, and the level of module generalization are all significantly influenced by product modular design, but different goods require different division indicators and techniques. The purpose of this study is to provide a set of appropriate modular division techniques for FDM 3D printers. This research offers an ecologically friendly module division index and uses module clustering as the module division principle in accordance with the current industrial development trend and the fundamental requirements of FDM 3D printer consumers in the current market. The K-means algorithm is used to use the Jaccard similarity coefficient as the metric of similarity of the DSM clustering process to realize the module division of the FDM 3D printer after studying the function–behavior–structure mapping model of the 3D printer. Additionally, the elbow method–cluster error variance and average contour coefficient evaluation systems were built, respectively, in order to verify the viability of the FDM 3D printer module division method and obtain the best module division results. By analyzing these two systems, it was discovered that when the FDM 3D printer was divided into three modules, the in-cluster error variance diagram obviously had an inflection point, and the average profile coefficient and other modular approaches that need to be adjusted to their respective goods can use this division method as a theoretical foundation and point of reference.

Funder

Hubei Provincial Central Leading Local Science and Technology Development Special Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3