Impact of Nanoparticles from Ball-Milled Date Palm Biochar on the Hydro-Physical Characteristics of Sandy Soils

Author:

Al-Omran Abdulrasoul M.1ORCID,Awad Mohammed M.1ORCID,Alghamdi Abdulaziz G.1ORCID,Alkhasha Arafat1ORCID

Affiliation:

1. Department of Soil Science, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

Water management in sandy soils (Typic Torripsamments) is crucial in sustaining agricultural production. The main goal of this research was to assess the impact of date palm biochar on the physical properties of sandy soil with different particle sizes of biochar (macro and nano). For nano-biochar preparation, stick chips were established into a tubular furnace with nitrogen air and heated to 400–450 °C, which was accompanied by a holding period of 4 h. The ball-milled biochar was inclined via ball grinding in a model number PQN2.110 planetary mill and within jars (500 mL), and the biochar-to-sphere mass ratio was 1:100. The sphere-milling apparatus was processed at a speed of 300 rpm for 13 h. Laboratory experiments were carried out at one rate—biochar 5%—and three depths (0.0–5, 5–10, and 10–15 cm). Applying macro-biochar reduced cumulative evaporation compared to the control by 4%, 24%, and 14% for the macro-biochar particles at soil depths. In contrast, biochar reduced cumulative evaporation compared to the control by 8%, 12%, and 4% for the nano-biochar particles at the soil depths tested. Adding biochar significantly raised the amount of retained water, with the highest level recorded at the 5–10 cm depth, while the variations were significantly lower between the macro and nano-biochar when in the direction of the soil surface (0–5 cm), indicating the significance of mixing biochar with the top 10 cm of the soil to increase its ability to reduce evaporation and increase the amount of water retained in the soils. It could be concluded that applying at the top of the coarse soil can positively impact soil hydro-physical properties and increase soil water availability to plants.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3