Hybrid Traffic Scheduling in 5G and Time-Sensitive Networking Integrated Networks for Communications of Virtual Power Plants

Author:

Wu Junmin12,Liu Chuan123,Tao Jing12,Liu Shidong12,Gao Wei4

Affiliation:

1. State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China

2. State Grid Laboratory of Electric Power Communication Network Technology, Beijing 102209, China

3. School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

4. China Electric Power Research Institute Co., Ltd., Beijing 100192, China

Abstract

The virtual power plant is one of the key technologies for the integration of various distributed energy resources into the power grid. To enable its smooth and reliable operation, the network infrastructure that connects the components for critical communications becomes a research challenge. Current communication networks based on the traditional Ethernet and long-term evolution cannot provide the required deterministic low latency or reliable communication services. This paper presents a three-layer virtual power plant communication architecture with 5G and time-sensitive networking integrated networks for both determinism and mobility. The service types and traffic requirements of the virtual power plant are analyzed and mapped between 5G and time-sensitive networking to guarantee their quality of service. This paper proposes a semi-persistent scheduling with reserved bandwidth sharing and a pre-emption mechanism for time-critical traffic to guarantee its bounded latency and reliability while improving the bandwidth utilization. The performance evaluation results show that the proposed mechanism effectively reduces the end-to-end delay for both time-triggered traffic and event-triggered traffic compared with the dynamic scheduling method. For event-triggered traffic, the proposed mechanism has comparable end-to-end delay performance to the static scheduling method. It largely improves the resource utilization compared to the static scheduling method when the network load becomes heavy. It achieves an optimum performance tradeoff between delay and resource utilization when the percentage of the reserved resource blocks is 30% in the simulation.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building a Resilient and Sustainable Grid: A Study of Challenges and Opportunities in AI for Smart Virtual Power Plants;Proceedings of the 2024 ACM Southeast Conference on ZZZ;2024-04-18

2. Smart performance optimization of energy‐aware scheduling model for resource sharing in 5G green communication systems;The Journal of Engineering;2024-02

3. Research on Network Delay Measurement Technology for Distributed Resource Aggregation Regulation;2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2023-12-08

4. Design of Communication Network and Safety Protection Scheme for Virtual Power Plant;2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC);2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3