Accurate Tracking Algorithm for Cluster Targets in Multispectral Infrared Images

Author:

Yang Shuai12,Zou Zhihui12,Li Yingchao12,Shi Haodong12,Fu Qiang12

Affiliation:

1. School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. Jilin Provincial Key Laboratory of Space Optoelectronics Technology, Changchun 130022, China

Abstract

To address the issue of poor tracking accuracy and the low recognition rate for multiple small targets in infrared images caused by uneven image intensity, this paper proposes an accurate tracking algorithm based on optical flow estimation. The algorithm consists of several steps. Firstly, an infrared image subspace model is established. Secondly, a full convolutional network (FCN) is utilized for local double-threshold segmentation of the target image. Furthermore, a target observation model is established using SIR filtering particles. Lastly, a shift vector sum algorithm is employed to enhance the intensity of the infrared image at a certain time scale in accordance with the relationship between the pixel intensity and the temporal parameters of the detected image. Experimental results demonstrate that the multi-target tracking accuracy (MOTA) reaches 79.7% and that the inference speed frame per second (FPS) reaches 42.3. Moreover, the number of ID switches during tracking is 9.9% lower than that of the MOT algorithm, indicating high recognition of cluster small targets, stable tracking performance, and suitability for tracking weak small targets on the ground or in the air.

Funder

ilin Province Science and Technology Development Plan

National Natural Science Foundation of China

Changchun Science and Technology Development Plan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3