Contour Mission Flight Planning of UAV for Photogrammetric in Hillside Areas

Author:

Hsieh Chia-Sheng1ORCID,Hsiao Darn-Horng1ORCID,Lin Di-Yi1ORCID

Affiliation:

1. Department of Civil Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung 80778, Taiwan

Abstract

Unmanned Aerial Vehicle (UAV) photogrammetry is an effective method for acquiring terrain information. However, in hillside areas, the terrain is complex, and the altitude varies greatly. The mission flight is planned by using equal altitude; in the actual shooting, the geometry and resolution of the pixel within the same image or between adjacent images will be inconsistent due to the different shooting distances. The number and accuracy of point clouds are affected. We propose a contour mission flight plan method, which involves designing flight plans based on the existing digital elevation model (DEM) and the desired flight altitude. This method for aerial photography is more effective in maintaining a consistent ground shooting distance during image capture. Experiments were conducted using a simulated DEM and the undulating terrain of the Kaohsiung Liugui area in Taiwan to verify the effect of contour mission flight planning in the hillside area. The results show that, due to the significant variation of terrain in the hillside area, the use of a contour mission flight plan for aerial photography can be more consistent with the originally planned altitude but requires more planning and operating time. The minor height difference, higher overlap, and improved accuracy of the results show that contour mission planning can provide a suitable solution for UAVs in hillside areas.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3