Data-Based Modelling of Chemical Oxygen Demand for Industrial Wastewater Treatment

Author:

Pörhö Henri1ORCID,Tomperi Jani1,Sorsa Aki1ORCID,Juuso Esko1ORCID,Ruuska Jari1,Ruusunen Mika1ORCID

Affiliation:

1. Control Engineering Research Group, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland

Abstract

The aim of wastewater treatment plants (WWTPs) is to clean wastewater before it is discharged into the environment. Real-time monitoring and control will become more essential as the regulations for effluent discharges are likely to become stricter in the future. Model-based soft sensors provide a promising solution for estimating important process variables such as chemical oxygen demand (COD) and help in predicting the performance of WWTPs. This paper explores the possibility of using interpretable model structures for monitoring the influent and predicting the effluent of paper mill WWTPs by systematically finding the best model parameters using an exhaustive algorithm. Experimentation was conducted with regression models such as multiple linear regression (MLR) and partial least squares regression (PLSR), as well as LASSO regression with a nonlinear scaling function to account for nonlinearities. Some autoregressive time series models were also built. The results showed decent modelling accuracy when tested with test data acquired from a wastewater treatment process. The most notable test results included the autoregressive model with exogenous inputs for influent COD (correlation 0.89, mean absolute percentage error 8.1%) and a PLSR model for effluent COD prediction (correlation 0.77, mean absolute percentage error 7.6%) with 20 h prediction horizon. The results show that these models are accurate enough for real-time monitoring and prediction in an industrial WWTP.

Funder

Business Finland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3