Overview on Intrusion Detection Systems Design Exploiting Machine Learning for Networking Cybersecurity

Author:

Dini Pierpaolo1ORCID,Elhanashi Abdussalam1ORCID,Begni Andrea1,Saponara Sergio1,Zheng Qinghe2ORCID,Gasmi Kaouther3

Affiliation:

1. Department of Information Engineering, University of Pisa, 56126 Pisa, Italy

2. School of Intelligence Engineering, Shandong Management University, Jinan 250100, China

3. Department of the Computer Science, University of Tunis, Tunis 1007, Tunisia

Abstract

The Intrusion Detection System (IDS) is an effective tool utilized in cybersecurity systems to detect and identify intrusion attacks. With the increasing volume of data generation, the possibility of various forms of intrusion attacks also increases. Feature selection is crucial and often necessary to enhance performance. The structure of the dataset can impact the efficiency of the machine learning model. Furthermore, data imbalance can pose a problem, but sampling approaches can help mitigate it. This research aims to explore machine learning (ML) approaches for IDS, specifically focusing on datasets, machine algorithms, and metrics. Three datasets were utilized in this study: KDD 99, UNSW-NB15, and CSE-CIC-IDS 2018. Various machine learning algorithms were chosen and examined to assess IDS performance. The primary objective was to provide a taxonomy for interconnected intrusion detection systems and supervised machine learning algorithms. The selection of datasets is crucial to ensure the suitability of the model construction for IDS usage. The evaluation was conducted for both binary and multi-class classification to ensure the consistency of the selected ML algorithms for the given dataset. The experimental results demonstrated accuracy rates of 100% for binary classification and 99.4In conclusion, it can be stated that supervised machine learning algorithms exhibit high and promising classification performance based on the study of three popular datasets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3