A Spatial Location Representation Method Incorporating Boundary Information

Author:

Jiang Hui1,Zhang Yukun2

Affiliation:

1. School of Intelligent Manufacturing, Huainan Union University, Huainan 232038, China

2. School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241060, China

Abstract

In response to problems concerning the low autonomous localization accuracy of mobile robots in unknown environments and large cumulative errors due to long time running, a spatial location representation method incorporating boundary information (SLRB) is proposed, inspired by the mammalian spatial cognitive mechanism. In modeling the firing characteristics of boundary cells to environmental boundary information, we construct vector relationships between the mobile robot and environmental boundaries with direction-aware information and distance-aware information. The self-motion information (direction and velocity) is used as the input to the lateral anti-Hebbian network (LAHN) to generate grid cells. In addition, the boundary cell response values are used to update the grid cell distribution law and to suppress the error response of the place cells, thus reducing the localization error of the mobile robot. Meanwhile, when the mobile robot reaches the boundary cell excitation zone, the activated boundary cells are used to correct the accumulated errors that occur due to long running times, which thus improves the localization accuracy of the system. The main contributions of this paper are as follows: 1. We propose a novel method for constructing boundary cell models. 2. An approach is presented that maps the response values of boundary cells to the input layer of LAHN (Location-Adaptive Hierarchical Network), where grid cells are generated through LAHN learning rules, and the distribution pattern of grid cells is adjusted using the response values of boundary cells. 3. We correct the cumulative error caused by long-term operation of place cells through the activation of boundary cells, ensuring that only one place cell responds to the current location at each individual moment, thereby improving the positioning accuracy of the system.

Funder

Robotics Control Technology Research Center of Huainan Union University

The cooperation R&D project of Anhui Sound Valley Intelligent Technology Co.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. A robot scene recognition method based on improved autonomous developmental network;Yu;Acta Autom. Sin.,2021

2. Brain-inspired multimodal hybrid neural network for robot place recognition;Yu;Sci. Robot.,2023

3. A unified theory for the computational and mechanistic origins of grid cells;Sorscher;Neuron,2023

4. A novel grid cell–based urban flood resilience metric considering water velocity and duration of system performance being impacted;Zheng;J. Hydrol.,2023

5. An improved cortical network model for environment cognition;Wu;Acta Autom. Sin.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3