The Influence of the Ultrasound Disintegration of Microalgal–Bacterial Granular Sludge on Anaerobic Digestion Efficiency

Author:

Dębowski Marcin1ORCID,Kisielewska Marta1,Zieliński Marcin1ORCID,Kazimierowicz Joanna2ORCID

Affiliation:

1. Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland

2. Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland

Abstract

It has been proven that the biocenosis of microalgae and bacteria improves the chemical properties of biomass for its use in anaerobic digestion. However, this anaerobic digestion can be limited by the strong, compact, and complex structure of granulated biomass. Therefore, there is a need to search for an effective method for microalgal–bacterial granular sludge pretreatment, which has not been undertaken in previous scientific works. In this study, ultrasonic pretreatment was used to determine the effects of sonication on anaerobic digestion efficiency. Anaerobic digestion was performed in batch respirometric reactors. It was found that the ultrasonic pretreatment enhanced the biomass solubility; thus, the organic matter concentration increased more than six times compared to the variant without pretreatment. The study showed a positive effect of sonication on the kinetics of the anaerobic process and methane production. The highest methane yield was found in the variants in which the ultrasonication lasted from 150 s to 200 s, and this yield was from 534 ± 16 mL CH4/g VS to 561 ± 17 mL CH4/g VS. The data analysis confirmed strong correlations between the pretreatment time, the amount of biogas and methane production, and the gross energy gain. The highest net energy output and net energy gain were obtained for 150 s of sonication, and, respectively, were 4.21 ± 0.17 Wh/g VS and 1.19 ± 0.18 Wh/g VS.

Funder

Minister of Education and Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3