Influence Mechanism of the Interfacial Water Content on Adhesive Behavior in Calcium Silicate Hydrate−Silicon Dioxide Systems: Molecular Dynamics Simulations

Author:

Ma Bin1,Chu Yunfan1,Huang Xiaolin1,Yang Bai1ORCID

Affiliation:

1. School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

The performance indicators of concrete are mainly determined by the interface characteristics between cement hydration slurry and aggregates. In this study, molecular dynamics technology was used to evaluate the effect of the interfacial water content on the evolution of the interface structure, interaction energy, and mechanical properties of calcium silicate hydrate (C-S-H) and silicon dioxide (SiO2) systems, and the weakening mechanism of the C-S-H/SiO2 interface in a humid environment was revealed. The results showed that all stress–strain curves of C-S-H/SiO2 were divided into the elastic stage and the failure stage. As the interfacial water layer thickened, the molecular weight of the water invading the C-S-H gradually increased, and the desorption of Ca2+ ions in the surface region became significant, while the amount of Ca2+ ions entering the water-layer region increased. The interaction energy of the C-S-H/SiO2 progressively became larger, and the energy ratio (ER) significantly decreased; the tensile strength σc and residual strength σr of C-S-H/SiO2 both showed a downward trend. In summary, a lower water content had a limited impact on the interfacial bonding strength, while the weakening effect enhanced with an increase in the interfacial water content. This phenomenon was also demonstrated in concrete interfacial bond strength experiments.

Funder

Science Technology Base and Talent Special Project of Guangxi, China

National Natural Science Foundation of China

Natural Science Foundation of Guangxi, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3