Machine Learning Algorithms Combining Slope Deceleration and Fetal Heart Rate Features to Predict Acidemia

Author:

Esteban Luis Mariano1ORCID,Castán Berta2,Esteban-Escaño Javier3,Sanz-Enguita Gerardo4,Laliena Antonio R.5,Lou-Mercadé Ana Cristina6ORCID,Chóliz-Ezquerro Marta7,Castán Sergio8,Savirón-Cornudella Ricardo9ORCID

Affiliation:

1. Departament of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain

2. Department of Obstetrics and Gynecology, San Pedro Hospital, 26006 Logroño, Spain

3. Department of Electronic Engineering and Communications, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain

4. Department of Applied Physics, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain

5. Departament of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain

6. Department of Obstetrics and Gynecology, Lozano Blesa University Hospital, 50009 Zaragoza, Spain

7. Department of Obstetrics, Dexeus University Hospital, 08028 Barcelona, Spain

8. Department of Obstetrics and Gynecology, Miguel Servet University Hospital, 50009 Zaragoza, Spain

9. Department of Obstetrics and Gynecology, Hospital Clínico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Calle del Prof Martín Lagos s/n, 28040 Madrid, Spain

Abstract

Electronic fetal monitoring (EFM) is widely used in intrapartum care as the standard method for monitoring fetal well-being. Our objective was to employ machine learning algorithms to predict acidemia by analyzing specific features extracted from the fetal heart signal within a 30 min window, with a focus on the last deceleration occurring closest to delivery. To achieve this, we conducted a case–control study involving 502 infants born at Miguel Servet University Hospital in Spain, maintaining a 1:1 ratio between cases and controls. Neonatal acidemia was defined as a pH level below 7.10 in the umbilical arterial blood. We constructed logistic regression, classification trees, random forest, and neural network models by combining EFM features to predict acidemia. Model validation included assessments of discrimination, calibration, and clinical utility. Our findings revealed that the random forest model achieved the highest area under the receiver characteristic curve (AUC) of 0.971, but logistic regression had the best specificity, 0.879, for a sensitivity of 0.95. In terms of clinical utility, implementing a cutoff point of 31% in the logistic regression model would prevent unnecessary cesarean sections in 51% of cases while missing only 5% of acidotic cases. By combining the extracted variables from EFM recordings, we provide a practical tool to assist in avoiding unnecessary cesarean sections.

Funder

Government of Aragon

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Computer analysis of foetal monitoring signals;Nunes;Best Pract. Res. Clin. Obstet. Gynaecol.,2016

2. The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia;Clark;Am. J. Obstet. Gynecol.,2017

3. American College of Obstetricians and Gynecologists (1974). Fetal heart rate monitoring: Guidelines. ACOG Tech. Bull., 32, 1–10.

4. American College of Obstetricians and Gynecologists (2010). Practice bulletin no. 116: Management of intrapartum fetal heart rate tracings. Obstet. Gynecol., 116, 1232–1240.

5. Diagnostic capacity and interobserver variability in FIGO, ACOG, NICE and Chandraharan cardiotocographic guidelines to predict neonatal acidemia;Zamora;J. Matern. Fetal Neonatal Med.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diagnosis of cardiotocographic sinusoidal patterns by spectral analyses;Biomedical Signal Processing and Control;2024-07

2. Design of Cold Chain Logistics Monitoring System based on ZigBee and GPS Positioning Technology;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3