Surface Defect Detection of Preform Based on Improved YOLOv5

Author:

Hou Jiatong12ORCID,You Bo23,Xu Jiazhong23,Wang Tao23,Cao Moran23

Affiliation:

1. School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin 150080, China

3. School of Automation, Harbin University of Science and Technology, Harbin 150001, China

Abstract

This paper proposes a lightweight detection model based on machine vision, YOLOv5-GC, to improve the efficiency and accuracy of detecting and classifying surface defects in preforming materials. During this process, clear images of the entire surface are difficult to obtain due to the stickiness, high reflectivity, and black resin of the thermosetting plain woven prepreg. To address this challenge, we built a machine vision platform equipped with a linescan camera and high-intensity linear light source that captures surface images of the material during the preforming process. To solve the problem of defect detection in the case of extremely small and imbalanced samples, we adopt a transfer learning approach based on the YOLOv5 neural network for defect recognition and introduce a coordinate attention and Ghost Bottleneck module to improve recognition accuracy and speed. Experimental results demonstrate that the proposed approach achieves rapid and high-precision identification of surface defects in preforming materials, outperforming other state-of-the-art methods. This work provides a promising solution for surface defect detection in preforming materials, contributing to the improvement of composite material quality.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3