Research on Prediction and Regulation of Thermal Dissatisfaction Rate Based on Personalized Differences

Author:

Liu Guanghui1ORCID,Wang Xiaohui1,Meng Yuebo1,Zhang Yalin1,Chen Tingting1

Affiliation:

1. College of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Thermal discomfort body language has been shown to be a psychological representation of personnel’s particular thermal comfort. Individual thermal comfort differences are ignored in public building settings with random personnel flow. To solve this issue, we suggested a Bayesian group thermal dissatisfaction rate prediction model based on thermal discomfort body language expression and subsequently implemented intelligent indoor temperature and humidity control. The PMV-PPD model was utilized to represent the group’s overall thermal comfort and to create a prior distribution of thermal dissatisfaction rate. To acquire the dynamic distribution of temperature discomfort body language, data on thermal discomfort body language expression were collected in a real-world office setting experiment. Based on Bayesian theory, we used personalized thermal discomfort body language expressions to modify the group’s universal thermal comfort and realized the assessment of the thermal dissatisfaction rate by combining commonality and personalization. Finally, a deep reinforcement learning system was employed to achieve intelligent indoor temperature and humidity control. The results show that when commonality and personalized thermal comfort differences are combined, real-time prediction of thermal dissatisfaction rate has high prediction accuracy and good model performance, and the prediction model provides a reference basis for reasonable indoor temperature and humidity settings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3