Blockchain-Based Distributed Computing Consistency Verification for IoT Mobile Applications

Author:

Zhao Jiahao1ORCID,Zhang Yushu1,Jiang Jiajia1

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

The maturation of wireless connectivity, blockchain (distributed ledger technologies), and intelligent systems has fostered a comprehensive ecosystem for the Internet of Things (IoT). However, the growing volume of data generated by IoT devices creates substantial pressure on blockchain storage and computation capabilities, impeding the further development of the IoT ecosystem. Decentralizing data storage across multiple chains and utilizing cross-chain technology for data exchange eliminates the need for expensive centralized infrastructure, lowers data transfer costs, and improves accessibility. Hence, the issue of computational and storage pressure in blockchain can be improved. Nonetheless, the data of IoT devices are constantly updating, and ensuring consistency for dynamic data across heterogeneous chains remains a significant challenge. To address the aforementioned challenge, we propose a blockchain-based distributed and lightweight data consistency verification model (BDCA), which leverages a batch verification dynamic Merkle hash tree (BV-MHT) and an advanced gamma multi-signature scheme (AGMS) to enable consistent verification of dynamic data while ensuring secure and private data transmission. The AGMS scheme is reliable and robust based on security analysis while the dependability and consistency of BDCA are verified through inductive reasoning. Experimental results indicate that BDCA outperforms CPVPA and Fortress in communication and computation overhead for data preprocessing and auditing in a similar condition, and the AGMS scheme exhibits superior performance when compared to other widely adopted multi-signature schemes such as Cosi, BLS, and RSA. Furthermore, BDCA provides up to 99% data consistency guarantees, demonstrating its practicality.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimized Blockchain Model for Secure and Efficient Data Management in Internet of Things*;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3