Comparative Evaluation of Viscosity, Density and Ultrasonic Velocity Using Deviation Modelling for Ethyl-Alcohol Based Binary Mixtures

Author:

Padmanaban Radhakrishnan1ORCID,Gayathri Ahobilam1,Gopalan Aanantha Iyengar2ORCID,Lee Dong-Eun23ORCID,Venkatramanan Kannan1ORCID

Affiliation:

1. Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Enathur, Kanchipuram 631561, India

2. Intelligent Construction Automation Center, Kyungpook National University, Daegu 41566, Republic of Korea

3. School of Architecture, Civil, Environment and Energy, Kyungpook National University, 1370, Sangyeok-dong, Buk-gu, Daegu 702701, Republic of Korea

Abstract

This study reports the comparative deviations in experimental viscosity, density and ultrasonic velocity of two new ethanol-based binary liquid mixtures (ethanol + 1-hexanol and ethanol + 1-octanol) at 303.15 K by applying various theoretical models (Hind relation (ηH), Kendall and Monroe relation (ηK-M), Bingham relation (ηB), Arrhenius–Eyring relation (ηAE), Croenauer-Rothfus Kermore relation (ηCRK) and Gambrill relation (ηG)). Typically, the experimental densities are compared with theoretical methods like the Mchaweh–Nasrifar–Mashfeghian model (ρMNM), Hankinson and Thomson model (ρHT), Yamada and Gunn model (ρYG) and Reid et al. (ρR) model. Additionally, the experimental ultrasonic velocities are compared with various theoretical models like the Nomoto relation (UN), Van Dael and Vangeel relation (UIMR), Impedance relation (UIR), Rao’s specific velocity relation (UR) and Junjie relation (UJ). The average percentage of deviation (APD) is determined to identify the most suited model that can closely agree to the experimental values of the specified property (viscosity, density and ultrasonic velocity). From the APD values, it may be concluded that the ηK-M model is the most suitable theoretical method for estimating the viscosity for the ethanol + 1-hexanol system, and the Gambrill model is the suitable method for estimating viscosity for ethanol + 1-octanol liquid systems. Similarly, the model of Reid et al. and Jungie’s relation are the most suited theoretical models to predict the density and ultrasonic velocity of the binary liquid systems, respectively. Form the experimental data, various molecular interaction properties like adiabatic compressibility, intermolecular free length, free volume, internal pressure, and viscous relaxation time are analysed. The results of this study are expected to be useful in predicting the suitable molecular proportions that can be suited for industrial application (flavouring additive, insecticide, in the manufacture of antiseptics, perfumes for 1-hexanol based mixtures and flavouring, and as an antifoaming agent for 1-octanol based liquid mixtures).

Funder

Korean government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3