Magnetic Interference Analysis and Compensation Method of Airborne Electronic Equipment in an Unmanned Aerial Vehicle

Author:

Chen Bingyang123,Huang Ling12,Zhang Ke123ORCID,Hu Jin12,Zhu Wanhua12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

At present, the research and application of aeromagnetic compensation are almost all based on the Tolles–Lawson (T–L) model. With the development of unmanned aerial vehicles (UAVs), the number of intelligent electronic devices in UAVs is increasing, and the magnetic environment of the platform is becoming more and more complicated. Research shows that the magnetic interference caused by airborne electronic equipment has been very significant, sometimes even reaching 100 nT. The traditional airborne magnetic compensation method based on the T–L model cannot effectively compensate the magnetic interference caused by airborne electronic equipment. Aiming at the problem of magnetic interference of airborne electronic equipment of UAVs, this paper analyzes the origin of magnetic interference of airborne electronic equipment using experiments, and it was found that it is related to the power supply current, and the characteristics of magnetic interference are similar to permanent magnet materials. Based on this feature, we eliminated the magnetic interference caused by the working current of airborne equipment by establishing a linear compensation model based on the current’s source. The experimental data show that the current interference source model proposed in this paper can effectively compensate the magnetic interference generated by airborne electronic equipment and the compensation improvement ratio (IR) is greater than 10.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3