A Data Quality Measurement Framework Using Distribution-Based Modeling and Simulation in Real-Time Telemedicine Systems

Author:

Jánki Zoltán Richárd1ORCID,Bilicki Vilmos1ORCID

Affiliation:

1. Department of Software Engineering, Institute of Informatics, University of Szeged, 6720 Szeged, Hungary

Abstract

In modern telemedicine systems, the data path can be exceedingly complex, with data passing through a number of phases and processes before reaching its ultimate state. It is extremely difficult to predict the effects of lacking data or improperly processed data on the final outcome. In real-time systems, and particularly in the field of telemedicine, it is crucial to rapidly identify and rectify issues in order to prevent the loss of large amounts of data and the degradation of data quality. A basic simulation is insufficient for a comprehensive examination of the system; instead, modeling approaches are required. However, a minor system’s state space can be immense. We present a methodology and a hybrid framework that incorporate simulation, emulation, and modeling in order to evaluate the state space and potential consequences of a sufficiently large system in a more targeted and condensed manner. In this paper, we demonstrate the structure and operation of our framework using an actively researched telemedicine use case, as well as how data quality can fluctuate and new anomalies can emerge if data is corrupted during an intermediate phase. According to our real-time Atrial Fibrillation (AF) and classification use case, data loss can be as high as 15%.

Funder

EU-funded Hungarian

Ministry of Innovation and Technology of Hungary

Artificial Intelligence National Laboratory Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3