KTAT: A Complex Embedding Model of Knowledge Graph Integrating Type Information and Attention Mechanism

Author:

Liu Ying12,Wang Peng13,Yang Di1

Affiliation:

1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China

2. School of Computer Science, Tonghua Normal University, Tonghua 134002, China

3. Changchun University of Science and Technology Chongqing Research Institute, Chongqing 401120, China

Abstract

Knowledge graph embedding learning aims to represent the entities and relationships of real-world knowledge as low-dimensional dense vectors. Existing knowledge representation learning methods mostly aggregate only the internal information of triplets and graph structure information. Recent research has proved that multi-source information of entities is conducive to more accurate knowledge embedding tasks. In this paper, we propose a model based on an attention mechanism and integrating the type information of entities, named KTAT. This model is based on the graph attention mechanism, to distribute corresponding attention mechanisms according to different weights between nodes. We introduce a type-specific hyperplane, which enables entities to have different embedding representations according to their type in the current triplet. Simultaneously, we also used textual description information of entities to improve the performance of the model. We conducted link prediction experiments on the FB15k and FB15k-237 datasets. The experimental results show that our model outperforms previous advanced methods compared to some baseline models, and demonstrate that combining type information can effectively improve the performance of link prediction.

Funder

Jilin Provincial Science and Technology Innovation Center for Network Database Application

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3