Load Balancing of Two-Sided Assembly Line Based on Deep Reinforcement Learning

Author:

Jia Guangpeng1,Zhang Yahui2,Shen Shuqi1,Liu Bozu1,Hu Xiaofeng3,Wu Chuanxun2

Affiliation:

1. Process Research Institution, China National Heavy Duty Truck Group Co., Ltd., Jinan 250100, China

2. 5G Intelligent Manufacturing Research Center, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China

3. Institute of Intelligent Manufacturing and Information Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

In the complex and ever-changing manufacturing environment, maintaining the long-term steady and efficient work of the assembly line is the ultimate goal pursued by relevant enterprises, the foundation of which is a balanced load. Therefore, this paper carries out research on the two-sided assembly line balance problem (TALBP) for load balancing. At first, a mathematical programming model is established with the objectives of optimizing the line efficiency, smoothness index, and completion time smoothness index of the two-sided assembly line (TAL). Secondly, a deep reinforcement learning algorithm combining distributed proximal policy optimization (DPPO) and the convolutional neural network (CNN) is proposed. Based on the distributed reinforcement learning agent structure assisted by the marker layer, the task assignment states of the two-sided assembly and decisions of selecting tasks are defined. Task assignment logic and reward function are designed according to the optimization objectives to guide task selection and assignment. Finally, the performance of the proposed algorithm is verified on the benchmark problem.

Funder

China National Heavy Duty Truck Group Co., Ltd.

New young teachers research start-up Fund of Shanghai Jiao Tong University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3