Joint Radar-Communication Optimization of Distributed Airborne Radar for AOA Localization

Author:

Ding Gangsong1,Wu Qinhao2ORCID,Hu Yutao3,Yin Jianfeng1,Wen Shengtao1

Affiliation:

1. People Liberation Army Troop 91431, Haikou 570100, China

2. Intelligent Gaming and Decision-Making Laboratory, Beijing 100010, China

3. Beijing Satellite Navigation Center, Beijing 100094, China

Abstract

Compared to the distributed ground-based radar (DGBR), the distributed airborne radar (DAR) has been widely applied due to its stronger anti-damage ability, more degrees of freedom, and better detection view of targets. However, unlike DGBR, the premise for the normal operation of DAR is to maintain stable wireless communication between unmanned aerial vehicles (UAVs). This requires each UAV to make reasonable use of its electromagnetic domain resources. That is, to maximize radar detection performance while ensuring communication performance constraints. However, current research in the field of radar resource allocation has not taken this into account, which greatly limits the practical application of optimization algorithms. Moreover, the current research tends to adopt centralized optimization algorithms. When the baseline of the UAV swarm is long, applying multi-relay methods directly results in heavy communications overhead and long-time delay. Based on the above background, this article aimed to develop a fully distributed algorithm for the joint optimization of radar detection performance and communication transmission performance. This study first took the measurement angle of arrival (AOA) as an example to provide a system model with communication constraints. This model considers the impact of factors such as the UAV location error, UAV communication coverage, and dynamic communication topology of the UAV on joint optimization. A formal representation of the joint optimization is presented. Then, we proposed a joint radar-communication optimization (JRCO) algorithm to fully utilize the electromagnetic domain resources of each UAV. Finally, numerical simulations verified the effectiveness of the proposed JRCO algorithm to traditional radar resource allocation methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3