Self-Regulated Particle Swarm Multi-Task Optimization

Author:

Zheng XiaolongORCID,Zhou Deyun,Li Na,Wu TaoORCID,Lei YuORCID,Shi JiaoORCID

Abstract

Population based search techniques have been developed and applied to wide applications for their good performance, such as the optimization of the unmanned aerial vehicle (UAV) path planning problems. However, the search for optimal solutions for an optimization problem is usually expensive. For example, the UAV problem is a large-scale optimization problem with many constraints, which makes it hard to get exact solutions. Especially, it will be time-consuming when multiple UAV problems are waiting to be optimized at the same time. Evolutionary multi-task optimization (EMTO) studies the problem of utilizing the population-based characteristics of evolutionary computation techniques to optimize multiple optimization problems simultaneously, for the purpose of further improving the overall performance of resolving all these problems. EMTO has great potential in solving real-world problems more efficiently. Therefore, in this paper, we develop a novel EMTO algorithm using a classical PSO algorithm, in which the developed knowledge transfer strategy achieves knowledge transfer between task by synthesizing the transferred knowledges from a selected set of component tasks during the updating of the velocities of population. Two knowledge transfer strategies are developed along with two versions of the proposed algorithm. The proposed algorithm is compared with the multifactorial PSO algorithm, the SREMTO algorithm, the popular multifactorial evolutionary algorithm and a classical PSO algorithm on nine popular single-objective MTO problems and six five-task MTO problems, which demonstrates its superiority.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3