Abstract
We propose a generalized susceptible-exposed-infected-removed (SEIR) model to track COVID-19 in Canadian provinces, taking into account the impact of the pandemics on unemployment. The model is based on a network representing provinces, where the contact between individuals from different locations is defined by a data-driven mixing matrix. Moreover, we use time-dependent parameters to account for the dynamical evolution of the disease incidence, as well as changes in the rates of hospitalization, intensive care unit (ICU) admission, and death. Unemployment is accounted for as a reduction in the social interaction, which translates into smaller transmission parameters. Conversely, the model assumes that higher proportions of infected individuals reduce overall economic activity and therefore increase unemployment. We tested the model using publicly available sources and found that it is able to reproduce the reported data with remarkable in-sample accuracy. We also tested the model’s ability to make short-term out-of-sample forecasts and found it very satisfactory, except in periods of rapid changes in behavior. Finally, we present long-term predictions for both epidemiological and economic variables under several future vaccination scenarios.
Funder
Fundação Butantan
Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina
Khalifa University
CNPq
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Natural Sciences and Engineering Research Council of Canada
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献