Author:
Bowala Sulalitha,Singh Japjeet
Abstract
Portfolio risk management plays an important role in successful investments. Portfolio standard deviation, value-at-risk, expected shortfall, and maximum absolute deviation are widely used portfolio risk measures. However, the existing portfolio risk measures are vulnerable to larger skewness and kurtosis of the asset returns. Moreover, the traditional assumption of normality of the portfolio returns leads to the underestimation of portfolio risk. Cryptocurrencies are a decentralized digital medium of exchange. In contrast to physical money, cryptocurrency payments exist purely as digital entries on an online ledger called blockchain that describe specific transactions. Due to the high volume and high frequency of cryptocurrency transactions, risk forecasting using daily data is not enough, and a high-frequency analysis is required. High-frequency data reveal a very high excess kurtosis and skewness for returns of cryptocurrencies. In order to incorporate larger skewness and kurtosis of the cryptocurrencies, a data-driven portfolio risk measure is minimized to obtain the optimal portfolio weights. A recently proposed data-driven volatility forecasting approach with daily data are used to study risk forecasting for cryptocurrencies with high-frequency (hourly) big data. The paper emphasizes the superiority of portfolio selection of cryptocurrencies by minimizing the recently proposed risk measure over the traditional minimum variance portfolio.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献