Subpixel Matching Using Double-Precision Gradient-Based Method for Digital Image Correlation

Author:

Liu Gang,Li Mengzhu,Zhang Weiqing,Gu Jiawei

Abstract

Digital image correlation (DIC) for displacement and strain measurement has flourished in recent years. There are integer pixel and subpixel matching steps to extract displacement from a series of images in the DIC approach, and identification accuracy mainly depends on the latter step. A subpixel displacement matching method, named the double-precision gradient-based algorithm (DPG), is proposed in this study. After, the integer pixel displacement is identified using the coarse-fine search algorithm. In order to improve the accuracy and anti-noise capability in the subpixel extraction step, the traditional gradient-based method is used to analyze the data on the speckle patterns using the computer, and the influence of noise is considered. These two nearest integer pixels in one direction are both utilized as an interpolation center. Then, two subpixel displacements are extracted by the five-point bicubic spline interpolation algorithm using these two interpolation centers. A novel combination coefficient considering contaminated noises is presented to merge these two subpixel displacements to obtain the final identification displacement. Results from a simulated speckle pattern and a painted beam bending test show that the accuracy of the proposed method can be improved by four times that of the traditional gradient-based method that reaches the same high accuracy as the Newton–Raphson method. The accuracy of the proposed method efficiently reaches at 92.67%, higher than the Newton-Raphon method, and it has better anti-noise performance and stability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3