Design and Implementation of a Particulate Matter Measurement System for Energy-Efficient Searching of Air Pollution Sources Using a Multirotor Robot

Author:

Suchanek Grzegorz1ORCID,Filipek Roman1ORCID,Gołaś Andrzej1ORCID

Affiliation:

1. Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicz 30 Av., 30-059 Krakow, Poland

Abstract

Analyzing air pollutants is of key importance for the environmental protection goals. High concentrations of particulate matter (PM) have a particularly negative impact on human life and health. The use of an autonomous multirotor flying robot (drone) for the purposes of locating PM sources requires the design of a dedicated measurement system from scratch. The aim of this study was to make the most important design decision, which is the correct localization of the inlet of the measurement system, taking into account disturbances in the flow field caused by the rotors. To achieve this, a computational model was built with the use of a finite-volume method in Ansys Fluent software. Based on its results, a novel criterion was proposed and applied. In addition to the trivial position outside the rotors on the extended arm, it gave the second location in the space limited by the rotors below the robot. Finally, a robot prototype was built, and a series of verification experiments were carried out, first indoors and then outdoors, at different levels of ambient PM concentrations with and without a pollution source. The field results were compiled as histograms and scatter plots and clearly demonstrated the validity of the adopted criterion. The determination coefficient between measured concentrations showed a stronger relationship when the rotors were operating. Furthermore, in cases with a present pollution source, higher concentrations were observed around the internal sensor, making it more suitable for the studied application.

Funder

National Subvention

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3