Foreign Object Shading Detection in Photovoltaic Modules Based on Transfer Learning

Author:

Liu Bin1,Kong Qingda1,Zhu Hongyu1,Zhang Dongdong1ORCID,Goh Hui Hwang1ORCID,Wu Thomas1

Affiliation:

1. School of Electrical Engineering, Guangxi University, Nanning 530004, China

Abstract

As a representative new energy source, solar energy has the advantages of easy access to resources and low pollution. However, due to the uncertainty of the external environment, photovoltaic (PV) modules that collect solar energy are often covered by foreign objects in the environment such as leaves and bird droppings, resulting in a decrease in photoelectric conversion efficiency, power losses, and even the “hot spot” phenomenon, resulting in damage to the modules. Existing methods mostly inspect foreign objects manually, which not only incurs high labor costs but also hinders real-time monitoring. To address these problems, this paper proposes an IDETR deep learning target detection model based on Deformable DETR combined with transfer learning and a convolutional block attention module, which can identify foreign object shading on the surfaces of PV modules in actual operating environments. This study contributes to the optimal operation and maintenance of PV systems. In addition, this paper collects data in the field and constructs a dataset of foreign objects of PV modules. The results show that the advanced model can significantly improve the target detection AP values.

Funder

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3