Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation

Author:

Fedele Emanuele1ORCID,Di Noia Luigi Pio1ORCID,Rizzo Renato1ORCID

Affiliation:

1. Department of Electrical Engineering and Information Technology, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy

Abstract

In electric vehicles, currents with high-frequency ripples flow in the power cabling system due to the switching operation of power converters. Inside the cables, a strong coupling between the thermal and electromagnetic phenomena exists, since the temperature and Alternating Current (AC) density distributions in the strands affect each other. Due to the different time scales of magnetic and heat flow problems, the computational cost of Finite Element Method (FEM) numeric solvers can be excessive. This paper derives a simple analytical model to calculate the total losses of a multi-stranded cable carrying a Direct Current (DC) affected by a high-frequency ripple. The expression of the equivalent AC cable resistance at a generic frequency and temperature is derived from the general treatment of multi-stranded multi-layer windings. When employed to predict the temperature evolution in the cable, the analytical model prevents the use of complex FEM models in which multiple heat flow and magnetic simulations have to be run iteratively. The results obtained for the heating curve of a 35 mm2 stranded cable show that the derived model matches the output of the coupled FEM simulation with an error below 1%, whereas the simple DC loss model of the cable gives an error of 2.4%. While yielding high accuracy, the proposed model significantly reduces the computational burden of the thermal simulation by a factor of four with respect to the complete FEM routine.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for Monitoring the Consumption, Performance and Status of Batteries in Electronic Devices;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3