Fuzzy Controllers Instead of Classical PIDs in HVAC Equipment: Dusting Off a Well-Known Technology and Today’s Implementation for Better Energy Efficiency and User Comfort

Author:

Chojecki Adrian1ORCID,Ambroziak Arkadiusz1ORCID,Borkowski Piotr1ORCID

Affiliation:

1. Department of Electrical Apparatus, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 90-537 Lodz, Poland

Abstract

Cutting-edge building energy management systems (BEMS) interact with heating, ventilation, air conditioning (HVAC) systems, which generally account for much of the energy consumption. Major attention is focused on the BEMS themselves, barring on-field equipment. In HVAC equipment, sub-optimal controller settings may lead to energy losses and user discomfort, for instance, due to oscillations of air temperature and fan speeds. The way to solve this problem could be to replace classical PID controllers with an alternative concept that does not require tuning and works optimally for a wide range of parameters. This paper compares a fuzzy logic controller (FLC) with a standard PID for a model-based simulation of an HVAC system in Simulink for different conditions using real building measurement data. The end result is the implementation of the developed methods in a newly designed universal control board for air handling units (AHU). The proposed FLC achieves better integral control quality indicators (IAE, ISE, ITAE, ITSE) by at least 27.4%, and smaller supply air temperature variation; the daily mean square error (MSE) was reduced by an average of 36%, which leads immediately to better occupant comfort and a presumed reduction in energy consumption. Compared to the untuned PID, energy consumption was 12.7% lower; this will ensure improved economy from the lowest level, and paves the way for interoperability with high-level energy management schemes.

Funder

Polish Agency for Enterprise Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3