Effect of Laser Peening on the Mechanical Properties of Aluminum Alloys Probed by Synchrotron Radiation and X-Ray Free Electron Laser

Author:

Sano YujiORCID,Masaki Kiyotaka,Akita Koichi,Kajiwara Kentaro,Sano TomokazuORCID

Abstract

Synchrotron radiation (SR) and X-ray free electron laser (XFEL) are indispensable tools not only for the exploration of science but also for the evolution of industry. We used SR and XFEL to elucidate the mechanism and the effects of laser peening without coating (LPwC) which enhances the durability of metallic materials. X-ray diffraction (XRD) employing SR revealed that the residual stress (RS) in the top surface became compressive as the laser pulse irradiation density increased with appropriate overlapping of adjacent laser pulses. SR-based computed tomography (CT) was used to nondestructively reconstruct three-dimensional (3D) images of fatigue cracks in aluminum alloy, revealing that LPwC retarded crack propagation on the surface and inside of the sample. SR-based computed laminography (CL) was applied to friction stir welded (FSWed) aluminum alloy plates to visualize fatigue cracks propagating along the welds. The fatigue crack had complicated shape; however, it became a semi-ellipsoid once projected onto a plane perpendicular to the fatigue loading direction. Ultra-fast XRD using an XFEL was conducted to investigate the dynamic response of aluminum alloy to an impulsive pressure wave simulating the LPwC condition. The diffraction pattern changed from spotty to smooth, implying grain refinement or subgrain formation. Shifts in diffraction angles were also observed, coinciding with the pressure history of laser irradiation. The durations of the dynamic phenomena were less than 1 µs; it may be possible to use high-repetition lasers at frequencies greater than kHz to reduce LPwC processing times.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference76 articles.

1. A review of surface integrity in machining and its impact on functional performance and life of machined products

2. Curtiss-Wright Surface Technologieshttps://cwst.com

3. LSP Technologieshttps://www.lsptechnologies.com

4. Laser Shock Peening, the Path to Production

5. Laser Shock Peening;Ding,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3