Improving the Mechanical Properties of a β-type Ti-Nb-Zr-Fe-O Alloy

Author:

Cojocaru Vasile DanutORCID,Nocivin Anna,Trisca-Rusu Corneliu,Dan Alexandru,Irimescu Raluca,Raducanu Doina,Galbinasu Bogdan Mihai

Abstract

The influence of complex thermo-mechanical processing (TMP) on the mechanical properties of a Ti-Nb-Zr-Fe-O bio-alloy was investigated in this study. The proposed TMP program involves a schema featuring a series of severe plastic deformation (SPD) and solution treatment (STs). The purpose of this study was to find the proper parameter combination for the applied TMP and thus enhance the mechanical strength and diminish the Young’s modulus. The proposed chemical composition of the studied β-type Ti-alloy was conceived from already-appreciated Ti-Nb-Ta-Zr alloys with high β-stability by replacing the expensive Ta with more accessible Fe and O. These chemical additions are expected to better enhance β-stability and thus avoid the generation of ω, α’, and α” during complex TMP, as well as allow for the processing of a single bcc β-phase with significant grain diminution, increased mechanical strength, and a low elasticity value/Young’s modulus. The proposed TMP program considers two research directions of TMP experiments. For comparisons using structural and mechanical perspectives, the two categories of the experimental samples were analyzed using SEM microscopy and a series of tensile tests. The comparison also included some already published results for similar alloys. The analysis revealed the advantages and disadvantages for all compared categories, with the conclusions highlighting that the studied alloys are suitable for expanding the database of possible β-Ti bio-alloys that could be used depending on the specific requirements of different biomedical implant applications.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3