Author:
Wang Yiming,Han Jing,Lu Jun,Bai Lianfa,Zhao Zhuang
Abstract
As the basic visual morphological characteristics of molten pool, contour extraction plays an important role in on-line monitoring of welding quality. The limitations of traditional edge detection algorithms make deep learning play a more important role in the task of target segmentation. In this paper, a molten pool visual sensing system in a tungsten inert gas welding (TIG) process environment is established and the corresponding molten pool image data set is made. Based on a residual network, a multi-scale feature fusion semantic segmentation network Res-Seg is designed. In order to further improve the generalization ability of the network model, this paper uses deep convolutional generative adversarial networks (DCGAN) to supplement the molten pool data set, then performs color and morphological data enhancement before network training. By comparing with other traditional edge detection algorithms and semantic segmentation network, it is verified that the scheme has high accuracy and robustness in the actual welding environment. Moreover, a back propagation (BP) neural network is used to predict the weld width, and a fitting test is carried out for the pixel width of the molten pool and its corresponding actual weld width. The average testing error is less than 0.2 mm, which meets the welding accuracy requirements.
Subject
General Materials Science,Metals and Alloys
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献