The Mini Blast Furnace Process: An Efficient Reactor for Green Pig Iron Production Using Charcoal and Hydrogen-Rich Gas: A Study of Cases

Author:

Adilson de Castro Jose,Medeiros Giulio Antunes deORCID,Oliveira Elizabeth Mendes de,de Campos Marcos Flavio,Nogami Hiroshi

Abstract

The mini blast furnace process is an efficient route to produce pig iron based on the burden with granulated charcoal. New, improved technologies have recently been introduced in the mini blast furnace process, such as pulverized charcoal and gas injections, new burden materials, and peripheral devices that improve the overall process efficiency. In this paper, we revise the new injection possibilities and discuss new aspects for further developments. The analysis is carried out with a comprehensive multiphase multicomponent mathematical model using mass, momentum, and energy conservation principles coupled with the rate equations for chemical reactions, multiphase momentum, and heat exchanges. We analyze new technological possibilities for the enhancement of this process as follows: (i) a base case of pulverized charcoal injection with industrial data comparison; (ii) a set of scenarios with raceway injections, combining pulverized charcoal with hydrogen-rich fuel gas, replacing granular charcoal in the burden; (iii) a set of scenarios with hydrogen-rich gas injection at the shaft level, replacing reducing gas in the granular zone of the reactor; and the possible combination of both methodologies. The simulated scenarios showed that a considerable decrease in granular charcoal consumption in the burden materials could be replaced by combining a pulverized charcoal injection of 150 kg/tHM and increasing rich gas injections and oxygen enrichment values, decreasing the specific blast injection and granular charcoal. The productivity of the mini blast furnace process was increased for all scenarios compared with the reference case. We review the aspects of these operational conditions and present an outlook for improvements on the process efficiency.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3