Abstract
Intermetallic materials typically change their deformation behavior from brittle to ductile at a certain temperature called the Brittle-to-Ductile Transition Temperature (BDTT). This specific temperature can be determined by the Charpy impact, tensile or bending tests conducted at different temperatures and strain rates, which usually requires a large number of specimens. In order to reduce the number of necessary specimens for finding the BDTT, a new methodology comprising cyclic loadings as the crucial step was studied on a fully lamellar TiAl alloy with composition Ti-48Al-2Nb-0.7Cr-0.3Si. The loading blocks are applied isothermally under strain control and repeated on the same specimen at different temperatures. The development of plastic strain amplitude with increasing temperature is analyzed to determine the BDTT of the specimen. The BDTTs found with the described method agree well with literature data derived with conventional methods. With the loading strategy presented in this study, the BDTT and additionally the effect of strain rate on it can be found by using a single specimen.
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献