Thermal Camber and Temperature Evolution on Work Roll during Aluminum Hot Rolling

Author:

Gavalas EvangelosORCID,Papaefthymiou SpyrosORCID

Abstract

Flatness is an important quality characteristic for rolled products. Modern hot rolling mills are equipped with actuators that can modify the uneven thickness distribution across the width of the strip (crown), taking into account online measurements of various process parameters such as temperature, force and exit strip profile, either automatically or manually by the operator. However, the crown is also influenced by many parameters that cannot easily be measured during production, such as work roll temperature evolution through thickness and roll geometric variation due to thermal expansion (thermal camber). These have an impact on the strip flatness. In this paper, a thermo-mechanical finite element model on LS-DYNA™ software was utilized to predict the influence of process parameters, and more specifically strip temperature, cooling strategy (application of cooling on the entry or entry and exit side simultaneously) and roll core temperature, on the evolution of roll temperature and thermal camber. The model was initially validated with industrial data. The results indicate that the application of both entry and exit cooling is ~30% more efficient compared to the entry cooling only, thus the thermal camber will be reduced by 2 μm. A hotter roll (380 K) is more stable compared to the cold roll (340 K), showing also an improvement of 2 μm. The hotter roll will also reach a thermal steady state on the surface faster compared to the colder one, without making a significant difference on the steady state temperature. Strip temperature plays a roll in the thermal camber evolution, but it is a less important parameter compared to cooling strategy and roll temperature.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference20 articles.

1. Prediction of Plate Crown during Aluminum Hot Flat Rolling by Finite Element Modeling

2. Determination of Optimal Work Roll Crown for a Hot Strip Mill;Guo;Iron Steel Technol.,1989

3. Analysis of roll stack deflection in a hot strip mill

4. Dynamical Models of the Camber and the Lateral Position in Flat Rolling

5. High-Accuracy Profile Prediction Model for Mixed Scheduled Rolling of High Tensile Strength and Mild Steel in Hot Strip Finishing Mill;Fukushima,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3