Filling the Gaps: Using Synthetic Low-Altitude Aerial Images to Increase Operational Design Domain Coverage

Author:

Rüter Joachim1ORCID,Maienschein Theresa1ORCID,Schirmer Sebastian1ORCID,Schopferer Simon1ORCID,Torens Christoph1ORCID

Affiliation:

1. German Aerospace Center (DLR), Institute of Flight Systems, 38108 Braunschweig, Germany

Abstract

A key necessity for the safe and autonomous flight of Unmanned Aircraft Systems (UAS) is their reliable perception of the environment, for example, to assess the safety of a landing site. For visual perception, Machine Learning (ML) provides state-of-the-art results in terms of performance, but the path to aviation certification has yet to be determined as current regulation and standard documents are not applicable to ML-based components due to their data-defined properties. However, the European Union Aviation Safety Agency (EASA) published the first usable guidance documents that take ML-specific challenges, such as data management and learning assurance, into account. In this paper, an important concept in this context is addressed, namely the Operational Design Domain (ODD) that defines the limitations under which a given ML-based system is designed to operate and function correctly. We investigated whether synthetic data can be used to complement a real-world training dataset which does not cover the whole ODD of an ML-based system component for visual object detection. The use-case in focus is the detection of humans on the ground to assess the safety of landing sites. Synthetic data are generated using the methods proposed in the EASA documents, namely augmentations, stitching and simulation environments. These data are used to augment a real-world dataset to increase ODD coverage during the training of Faster R-CNN object detection models. Our results give insights into the generation techniques and usefulness of synthetic data in the context of increasing ODD coverage. They indicate that the different types of synthetic images vary in their suitability but that augmentations seem to be particularly promising when there is not enough real-world data to cover the whole ODD. By doing so, our results contribute towards the adoption of ML technology in aviation and the reduction of data requirements for ML perception systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3