Path-Planning Strategy for Lane Changing Based on Adaptive-Grid Risk-Fields of Autonomous Vehicles

Author:

Yang Zhengcai,Hu YunzhongORCID,Zhang Youbing

Abstract

The quantification and effective representation of safety risks for scenarios in structured road traffic environments of autonomous driving are currently being investigated in an active way. Based on artificial potential fields, a risk-field model for the traffic environment that considers the motion state of an obstacle vehicle is established, and an adaptive-grid risk-field method is proposed for autonomous vehicles. In this method, the traffic environment is meshed initially, and adaptive-grid division is performed using a quadtree grid-dividing strategy for root grids where the grid risk values are within the division interval, which allows for a more accurate quantification of traffic environment risk values. Adding adaptive-grid risk-field parameters to the cost function of the path-planning algorithm improves the accuracy of path safety risk assessment and completes the evaluation and selection of the optimal lane-change path. Simulation results show that the adaptive-grid risk-field established in this paper can effectively express the safety risks of the traffic environment, and the path-planning algorithm incorporating the adaptive-grid risk-field can obtain better paths for lane change compared with the traditional path-planning algorithm, while ensuring the safety of lane change.

Funder

Hubei Provincial Key Research and Development Project,China

Publisher

MDPI AG

Subject

Automotive Engineering

Reference24 articles.

1. Real-time obstacle avoidance for manipulators and mobile robots;Khatib;Proceedings of the 1985 IEEE International Conference on Robotics and Automation,1985

2. Real-time obstacle avoidance for fast mobile robots

3. Real-time obstacle avoidance for fast mobile robots;Wang;J. Harbin Eng. Univ.,2003

4. 3-D path planning in a dynamic environment using an octree and an artificial potential field;Kitamura;Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots,1995

5. Artificial potential functions for highway driving with collision avoidance;Wolf;Proceedings of the 2008 IEEE International Conference on Robotics and Automation,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3