Abstract
In this study, nanoparticle stabilized foam experiments were performed in bulk tests, micromodels, and sandpacks at elevated temperatures and pressures to investigate the flow behavior and displacement mechanisms for enhanced heavy oil recovery. The results from the bulk tests showed that the stability of the foam and oil in water (O/W) emulsion improved when silica nanoparticles (SiO2) were added, compared with the anionic surfactant alone. Also, the SiO2 nanoparticles increased the dilatational viscoelasticity of the gas-water interface, which is an important fluid property and mechanism for improving heavy oil recovery. The micromodel studies demonstrated that several gas bubbles and oil droplets were stably dispersed during the nanoparticle stabilized foam flooding. The gas bubbles and oil droplets plug pores through capture-plugging and bridge-plugging, thereby increasing the sweep efficiency. The trapped residual oil is gradually pushed to the pores by the elastic forces of bubbles. Subsequently, the residual oil is pulled into oil threads by the flowing gas bubbles. Then, a greater improvement in displacement efficiency is obtained. The sandpack tests showed that the tertiary oil recovery of nanoparticle stabilized foam flooding can reach about 27% using 0.5 wt % SiO2 nanoparticles. The foam slug size of 0.3 pore volume (PV) and the gas liquid ratio (GLR) of 3:1 were found to be the optimum conditions in terms of heavy oil recovery by nanoparticle stabilized foam flooding in this study. A continuous nanoparticle dispersion and N2 could be more effective compared with the cyclic injection pattern.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
National Science and Technology Major Project of China
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献