Bio-Inspired Approaches to Safety and Security in IoT-Enabled Cyber-Physical Systems

Author:

Johnson Anju P.ORCID,Al-Aqrabi HussainORCID,Hill RichardORCID

Abstract

Internet of Things (IoT) and Cyber-Physical Systems (CPS) have profoundly influenced the way individuals and enterprises interact with the world. Although attacks on IoT devices are becoming more commonplace, security metrics often focus on software, network, and cloud security. For CPS systems employed in IoT applications, the implementation of hardware security is crucial. The identity of electronic circuits measured in terms of device parameters serves as a fingerprint. Estimating the parameters of this fingerprint assists the identification and prevention of Trojan attacks in a CPS. We demonstrate a bio-inspired approach for hardware Trojan detection using unsupervised learning methods. The bio-inspired principles of pattern identification use a Spiking Neural Network (SNN), and glial cells form the basis of this work. When hardware device parameters are in an acceptable range, the design produces a stable firing pattern. When unbalanced, the firing rate reduces to zero, indicating the presence of a Trojan. This network is tunable to accommodate natural variations in device parameters and to avoid false triggering of Trojan alerts. The tolerance is tuned using bio-inspired principles for various security requirements, such as forming high-alert systems for safety-critical missions. The Trojan detection circuit is resilient to a range of faults and attacks, both intentional and unintentional. Also, we devise a design-for-trust architecture by developing a bio-inspired device-locking mechanism. The proposed architecture is implemented on a Xilinx Artix-7 Field Programmable Gate Array (FPGA) device. Results demonstrate the suitability of the proposal for resource-constrained environments with minimal hardware and power dissipation profiles. The design is tested with a wide range of device parameters to demonstrate the effectiveness of Trojan detection. This work serves as a new approach to enable secure CPSs and to employ bio-inspired unsupervised machine intelligence.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3