Adaptive Echolocation and Flight Behaviors in Bats Can Inspire Technology Innovations for Sonar Tracking and Interception

Author:

Diebold Clarice Anna,Salles AngelesORCID,Moss Cynthia F.ORCID

Abstract

Target tracking and interception in a dynamic world proves to be a fundamental challenge faced by both animals and artificial systems. To track moving objects under natural conditions, agents must employ strategies to mitigate interference and conditions of uncertainty. Animal studies of prey tracking and capture reveal biological solutions, which can inspire new technologies, particularly for operations in complex and noisy environments. By reviewing research on target tracking and interception by echolocating bats, we aim to highlight biological solutions that could inform new approaches to artificial sonar tracking and navigation systems. Most bat species use wideband echolocation signals to navigate dense forests and hunt for evasive insects in the dark. Importantly, bats exhibit rapid adaptations in flight trajectory, sonar beam aim, and echolocation signal design, which appear to be key to the success of these animals in a variety of tasks. The rich suite of adaptive behaviors of echolocating bats could be leveraged in new sonar tracking technologies by implementing dynamic sensorimotor feedback control of wideband sonar signal design, head, and ear movements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference96 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noise as an Extrinsic Variable in the Animal Research Facility;Journal of the American Association for Laboratory Animal Science;2024-05-01

2. Sensory systems used by echolocating bats foraging in natural settings;A Natural History of Bat Foraging;2024

3. A Broadband Approach for the Generation and Reception of Low-Frequency Ultrasounds In-Air for Sonar Applications;2021 International Conference on e-Health and Bioengineering (EHB);2021-11-18

4. The journey in comparative psychology matters more than the destination.;Journal of Comparative Psychology;2021-05

5. Simulation of Pulse-Echo Radar for Vehicle Control and SLAM;Sensors;2021-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3