A Blockchain-Based Auction Framework for Location-Aware Services

Author:

Almiani Khaled12ORCID,Alrub Mutaz Abu3,Lee Young Choon4ORCID,Rashidi Taha H.5ORCID,Pasdar  Amirmohammad4ORCID

Affiliation:

1. Faculty of Computer Information Science, Higher Colleges of Technology, Fujairah Women’s Campus, Fujairah P.O. Box 1626, United Arab Emirates

2. Computer Science Department, Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an 71111, Jordan

3. Decapolis, Amman 11185, Jordan

4. School of Computing, Macquarie University, Sydney, NSW 2109, Australia

5. School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

As a critical factor in ensuring the growth of the electronic auction (e-auction) domain, the privacy and security of the participants (sellers and buyers) must always be guaranteed. Traditionally, auction data, including participant details, are stored in a third party (auctioneer) database. This leads to a high risk of a single point of failure in terms of privacy and security. Toward this end, blockchain technology has emerged as a promising decentralized communication paradigm to address such risks. This paper presents a blockchain-based auction framework as a decentralized e-auctioning framework for location-aware services. In particular, the framework consists of three components: pre-auctioning, main auctioning, and post-auctioning processes with four algorithms. Our primary focus is on location-aware services, such as storage space rental, apartment rental, transport hire, and parking space rental. The trading volumes are expected to be high; hence, simplifying the design is a crucial requirement. In addition to the benefits of eliminating the centralized entity (the auctioneer), fees are redistributed among participants as rewards. Further, we incorporate a service quality monitoring method that ranks the services provided by participants. This ranking allows participants to determine the rank of other participants with whom they wish to trade. We have conducted several experiments to evaluate the proposed framework’s cost feasibility and to ensure the ease of the business flow.

Funder

Higher Colleges of Technology

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3