Collaborative Mechanism for Pickup and Delivery Problems with Heterogeneous Vehicles Under Time Windows

Author:

Wang ,Yuan ,Guan ,Wang ,Liu ,Xu

Abstract

The sustainability and complexity of logistics networks come from the temporally and spatially uneven distributions of freight demand and supply. Operation strategies without considering the sustainability and complexity could dramatically increase the economic and environmental costs of logistics operations. This paper explores how the unevenly distributed demand and supply can be optimally matched through collaborations, and formulates and solves a Collaborative Pickup and Delivery Problem under Time Windows (CPDPTW) to optimize the structures of logistics networks and improve city sustainability and liverability. The CPDPTW is a three-stage framework. First, a multi-objective linear optimization model that minimizes the number of vehicles and the total cost of logistics operation is developed. Second, a composite algorithm consisting of improved k-means clustering, Demand-and-Time-based Dijkstra Algorithm (DTDA) and Improved Non-dominated Sorting Genetic Algorithm-II (INSGA-II) is devised to solve the optimization model. The clustering algorithm helps to identify the feasible initial solution to INSGA-II. Third, a method based on improved Shapley value model is proposed to obtain the collaborative alliance strategy that achieves the optimal profit allocation strategy. The proposed composite algorithm outperforms existing algorithms in minimizing terms of the total cost and number of electro-tricycles. An empirical case of Chongqing is employed to demonstrate the efficiency of the proposed mechanism for achieving optimality for logistics networks and realizing a win-win situation between suppliers and consumers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3