Trends and Challenges towards Effective Data-Driven Decision Making in UK Small and Medium-Sized Enterprises: Case Studies and Lessons Learnt from the Analysis of 85 Small and Medium-Sized Enterprises

Author:

Tawil Abdel-Rahman H.1,Mohamed Muhidin2ORCID,Schmoor Xavier1ORCID,Vlachos Konstantinos1ORCID,Haidar Diana1

Affiliation:

1. School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK

2. Department of Operations and Information Management, ABS, Aston University, Birmingham B4 7ET, UK

Abstract

The adoption of data science brings vast benefits to Small and Medium-sized Enterprises (SMEs) including business productivity, economic growth, innovation and job creation. Data science can support SMEs to optimise production processes, anticipate customers’ needs, predict machinery failures and deliver efficient smart services. Businesses can also harness the power of artificial intelligence (AI) and big data, and the smart use of digital technologies to enhance productivity and performance, paving the way for innovation. However, integrating data science decisions into an SME requires both skills and IT investments. In most cases, such expenses are beyond the means of SMEs due to their limited resources and restricted access to financing. This paper presents trends and challenges towards effective data-driven decision making for organisations based on a 3-year long study which covered more than 85 UK SMEs, mostly from the West Midlands region of England. In particular, this study attempts to find answers to several key research questions around data science and AI adoption among UK SMEs, and the advantages of digitalisation and data-driven decision making, as well as the challenges hindering their effective utilisation of these technologies. We also present two case studies that demonstrate the potential of digitisation and data science, and use these as examples to unveil challenges and showcase the wealth of currently available opportunities for SMEs.

Funder

European Union

Birmingham City Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3