Numerical Analysis of High-Altitude Inlet Air on Boundary Layer Flow Loss in an Aero-Engine Compressor

Author:

Wu Feng,Gao Limin,Yang LuORCID,Lin AqiangORCID,Zhang Hai

Abstract

A numerical analysis is performed to explore the high altitude and high Mach flight on the effect of wall boundary layer loss in the compressor. The accuracy for solution results by the application of the similarity criterion and parameter definition of the air inlet is compared with the existing experimental test result. The results indicate that the radial adverse pressure gradient in the rotor domain gradually increases along the span direction and decreases as flight Mach number increases; meanwhile, the circumferential adverse pressure gradient on the pressure side of the rotor blade is correspondingly larger and less than that on the suction side. In particular, the entropy increase along the streamwise shows a decreasing trend and an increasing trend inside the hub and shroud wall boundary layers, respectively. At 2.1 Ma, the entropy increase in the rotor domains enhances by 24.36–27.80% inside the shroud boundary layer, relative to the hub boundary layer; however, it decreases by 0.97–8.54% in the stator domain. With the increase in flight Mach number from 2.1 to 3.4, the average entropy increase reductions in the rotor domain decrease by 18.99–24.97% within the hub boundary layer and 5.71–8.1% within the shroud boundary layer. In the stator domain, it drops by 18.45–9.03% inside the hub boundary layer and 6.88–8.67% inside the shroud boundary layer. It was therefore found that, as Mach number increases from 2.1 to 3.4, the entropy increase reduction is larger inside the hub boundary layer than inside the shroud boundary layer.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3