Thermal Management of Stationary Battery Systems: A Literature Review

Author:

Henke Martin,Hailu GetuORCID

Abstract

Stationary battery systems are becoming increasingly common worldwide. Energy storage is a key technology in facilitating renewable energy market penetration and battery energy storage systems have seen considerable investment for this purpose. Large battery installations such as energy storage systems and uninterruptible power supplies can generate substantial heat in operation, and while this is well understood, the thermal management systems that currently exist have not kept pace with stationary battery installation development. Stationary batteries operating at elevated temperatures experience a range of deleterious effects and, in some cases, serious safety concerns can arise. Optimal thermal management prioritizes safety and balances costs between the cooling system and battery degradation due to thermal effects. Electric vehicle battery thermal management has undergone significant development in the past decade while stationary battery thermal management has remained mostly stagnant, relying on the use of active and passive air cooling. Despite being the default method for thermal management, there is an absence of justifying research or comparative reviews. This literature review seeks to define the role of stationary battery systems in modern power applications, the effects that heat generation and temperature have on the performance of these systems, thermal management methods, and future areas of study.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference102 articles.

1. Korea’s ESS Fires: Batteries not to Blame but Industry Takes Hit Anywayhttps://www.energy-storage.news/news/koreas-ess-fires-batteries-not-to-blame-but-industry-takes-hit-anyway

2. Energy Storage Companies Continue to Wrestle with Fire Safetyhttps://www.spglobal.com/marketintelligence/en/news-insights/trending/VfyQuAoG0QbIPrvo13HprA2

3. Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs

4. Principles of Sustainable Energy Systems;Kreith,2013

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3