Improving the Energy Balance of Hydrocarbon Production Using an Inclined Solid–Liquid Separator with a Wedge-Wire Screen and Easy Hydrocarbon Recovery from Botryococcus braunii

Author:

Furuhashi Kenichi,Hasegawa Fumio,Yamauchi Manabu,Kaizu Yutaka,Imou Kenji

Abstract

The green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons and has attracted attention as a potential source of biofuel. When this freshwater microalga is cultured in a brackish medium, the hydrocarbon recovery rate increases; furthermore, the colony size becomes large. In this study, the effects of such changes on the energy balance of harvesting and hydrocarbon recovery were studied via filtrate experiments on an inclined separator and extraction from a concentrated slurry. The inclined separator was effective for harvesting large-colony-forming algae. The water content on the wire screen of slit sizes larger than 150 µm was <80% and a separation rate of >85% could be achieved. The input energy of the harvesting using the brackish medium with this separator was ≈44% of that using the freshwater medium with vacuum filtration, while the input energy of the hydrocarbon recovery using the brackish medium was ≈88% of that using the freshwater medium with pre-heating before n-hexane extraction. Furthermore, the energy profit ratio of the process in the brackish medium was 2.92, which was ≈1.2 times higher than that in the freshwater medium. This study demonstrated that filtration techniques and hydrocarbon recovery from B. braunii with a low energy input through culture in a brackish medium are viable.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3