State of Charge Estimation of Lithium Battery Based on Improved Correntropy Extended Kalman Filter

Author:

Duan Jiandong,Wang Peng,Ma WentaoORCID,Qiu Xinyu,Tian Xuan,Fang Shuai

Abstract

State of charge (SOC) estimation plays a crucial role in battery management systems. Among all the existing SOC estimation approaches, the model-driven extended Kalman filter (EKF) has been widely utilized to estimate SOC due to its simple implementation and nonlinear property. However, the traditional EKF derived from the mean square error (MSE) loss is sensitive to non-Gaussian noise which especially exists in practice, thus the SOC estimation based on the traditional EKF may result in undesirable performance. Hence, a novel robust EKF method with correntropy loss is employed to perform SOC estimation to improve the accuracy under non-Gaussian environments firstly. Secondly, a novel robust EKF, called C-WLS-EKF, is developed by combining the advantages of correntropy and weighted least squares (WLS) to improve the digital stability of the correntropy EKF (C-EKF). In addition, the convergence of the proposed algorithm is verified by the Cramér–Rao low bound. Finally, a C-WLS-EKF method based on an equivalent circuit model is designed to perform SOC estimation. The experiment results clarify that the SOC estimation error in terms of the MSE via the proposed C-WLS-EKF method can efficiently be reduced from 1.361% to 0.512% under non-Gaussian noise conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3