Feature Selection for SAR Target Discrimination and Efficient Two-Stage Detection Method

Author:

Jeong Nam-HoonORCID,Choi Jae-Ho,Lee Geon,Park Ji-Hoon,Kim Kyung-Tae

Abstract

Feature-based target detection in synthetic aperture radar (SAR) images is required for monitoring situations where it is difficult to obtain a large amount of data, such as in tactical regions. Although many features have been studied for target detection in SAR images, their performance depends on the characteristics of the images, and both efficiency and performance deteriorate when the features are used indiscriminately. In this study, we propose a two-stage detection framework to ensure efficient and superior detection performance in TSX images, using previously studied features. The proposed method consists of two stages. The first stage uses simple features to eliminate misdetections. Next, the discrimination performance for the target and clutter of each feature is evaluated and those features suitable for the image are selected. In addition, the Karhunen–Loève (KL) transform reduces the redundancy of the selected features and maximizes discrimination performance. By applying the proposed method to actual TerraSAR-X (TSX) images, the majority of the identified clusters of false detections were excluded, and the target of interest could be distinguished.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SAR image classification with convolutional neural network using modified functions;Soft Computing;2023-11-25

2. SAR Noise Jamming Performance Evaluation Using SAR-ATR;The Journal of Korean Institute of Electromagnetic Engineering and Science;2023-07

3. Research on target system selection of correlated data based on Bayesian network;2022 International Conference on Industrial Automation, Robotics and Control Engineering (IARCE);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3