Outlier-Robust Truncated Maximum Likelihood Parameter Estimation of Compound-Gaussian Clutter with Inverse Gaussian Texture

Author:

Tian Chao,Shui Peng-LangORCID

Abstract

Compound-Gaussian distributions with inverse Gaussian textures, referred to as the IGCG distributions, are often used to model moderate/high-resolution sea clutter in amplitude. In moderate/high-resolution maritime radars, parameter estimation of the IGCG distributions from radar returns data plays an important role in adaptive target detection. Due to the inevitable existence of outliers of high amplitude in radar returns data from targets and reefs, parameter estimation must be outlier robust. In this paper, an outlier-robust truncated maximum likelihood (TML) estimation method is proposed to mitigate the effect of outliers of high amplitude in data. The data are first transferred into the truncated data by removing a given percentage of the largest samples in amplitude. From the truncated data, the truncated likelihood function is constructed, and its maximum corresponds to the TML estimates of the scale and inverse shape parameters. Further, an iterative algorithm is presented to obtain the TML estimates from data with outliers, which is an extension of the ML estimation method in the case that data contain outliers. In comparison with outlier-sensitive estimation methods and outlier-robust bipercentile estimation methods, the performance of the TML estimation method is close to that of the best ML estimation method in the case that data are without outlier, and it is better in the case that data are with outliers.

Funder

National Natural Science Foundation of China

National Radar Signal Processing Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3