No-Till Soil Organic Carbon Sequestration Patterns as Affected by Climate and Soil Erosion in the Arable Land of Mediterranean Europe

Author:

Baiamonte GiorgioORCID,Gristina Luciano,Orlando SantoORCID,Palermo Salvatore Samuel,Minacapilli MarioORCID

Abstract

No-tillage (NT) has been considered an agronomic tool to sequester soil organic carbon (SOC) and match the 4p1000 initiative requirements of conservative soil management. Recently, some doubts have emerged about the NT effect on SOC sequestration, often because observations and experimental data vary widely depending on climate and geographic characteristics. Therefore, a suitable SOC accounting method is needed that considers climate and morphology interactions. In this study, the yearly ratio between SOC in NT and conventional tillage (CT) (RRNT/CT) collected in a previous study for flat (96 samples) and sloping (44 samples) paired sites was used to map the overestimation of SOC sequestration. It was assumed that there would be an overestimation of NT capacity in sloping fields due to lower erosion processes with respect to CT. Towards this aim, Geographical Information System (GIS) techniques and an extensive input database of high spatial resolution maps were used in a simplified procedure to assess the overestimation of SOC stocks due to the sloping conditions and spatial variability of the Aridity Index (AI). Moreover, this also made it possible to quantify the effects of adopting NT practices on soil carbon sequestration compared to CT practices. The method was applied to the arable lands of five Mediterranean countries (France, Greece, Italy, Portugal and Spain) ranging between the 35° and 46° latitude. The results showed an overestimation of SOC sequestration, when the AI and soil erosion were considered. The average overestimation rate in the studied Mediterranean areas was 0.11 Mg ha−1 yr−1. Carbon stock overestimation ranged from 34 to 1417 Gg for Portugal and Italy, respectively. Even if overestimation is considered, 4p1000 goals are often reached, especially in the more arid areas. The findings of this research allowed us to map the areas suitable to meet the 4p1000 that could be achieved by adopting conservative practices such as NT.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3