Recovering Regional Groundwater Storage Anomalies by Combining GNSS and Surface Mass Load Data: A Case Study in Western Yunnan

Author:

Xu Pengfei,Jiang TaoORCID,Zhang Chuanyin,Shi Ke,Li Wanqiu

Abstract

The redistribution of surface mass (e.g., atmosphere, soil water, oceans, and groundwater) can cause load responses, resulting in vertical deformations of the crust. Indeed, the global navigation satellite system (GNSS)-based continuously operating reference stations (CORS) are able to accurately measure the vertical deformation caused by surface mass loads. In this study, the CORS was used to invert groundwater storage anomalies (GWSA), represented by the equivalent water height (EWH), after removing the effect of the non-groundwater surface mass load (atmospheric, groundwater, and non-tidal oceanic loads) from the vertical deformation monitored by CORS. In addition, the global and regional high-resolution surface mass models were combined to calculate the high-precision load deformation field in in western Yunnan using the remove–restore method, thereby obtaining more accurate surface mass load data and improving the accuracy of the inverted GWSA results. In order to assess the feasibility of the CORS inversion for the GWSA used, 66 CORS stations in western Yunnan Province were considered, presenting weekly GWSA data from 10 January 2018 to 31 December 2020. The results revealed significant seasonal variation in GWSA in the study area, showing an amplitude range of −200–200 mm. This approach is based on the already-established CORS network without requiring additional set-up costs. In addition, the reliability of CORS inverse results was assessed using Gravity Recovery and Climate Experiment (GRACE) inverse results and actual groundwater monitoring data. According to the obtained results, GWSA can be monitored by both CORS and GRACE data; however, CORS provided a more effective spatiotemporal resolution of GWSA. Therefore, the CORS network combined with surface mass load data is able to effectively monitor the spatiotemporal dynamics of GWSA in small-scale areas and provides important references for the study of hydrology.

Funder

National Natural Science Foundation of China

the Open Fund Project of the Key Laboratory of Marine Environmental Survey Technology and Application of the Ministry of Natural Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3